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Introduction

- Electroencephalograms (EEGs) can record electrical
activity in the brain.

- They can be used to augment human sensory functions
or control robotic devices.

- |n order to perform these functions the Brain Computer
Interface (BCI) must be able to classify EEG patterns as
corresponding to a certain task and relay that
information to control the device of interest.
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Introduction

» We focus on the BCI competition Ill Dataset V in which
the goal is to classify three mental tasks online.
* There are 3 tasks:
— Imagination of repetitive self-paced left hand
movements, (left, class 2),
— Imagination of repetitive self-paced right hand
movements, (right, class 3),
— Generation of words beginning with the same
random letter, (word, class 7).

BCI Competition lll (dataset V): http://www.bbci.de/competition/iii/
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Dataset

« BCI Competition iii Dataset V

« 32 Electrodes to collect EEG data.

 EEG: ElectroEncephaloGraphy - method to record an
electrogram of the spontaneous electrical activity of the
brain.

« Sampling rate is 512 Hz

BCI Competition lll (dataset V): http://www.bbci.de/competition/iii/
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Dataset

« 3 Subjects with 3 activities over 4 sessions

« Dataset has raw EEG signals, and precomputed
features by spatial filtering and calculating power
spectral density.

 PSD: the measure of signal's power content versus
frequency.

BCI Competition lll (dataset V): http://www.bbci.de/competition/iii/
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Dataset

e Size
— Each subject has 3 labeled training files and 1
unlabeled testing file.
— 31216 Training samples.
— 10464 Testing samples.
— Raw EEG signals for 32 channels and
96-dimensional precomputed features.

BCI Competition lll (dataset V): http://www.bbci.de/competition/iii/
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Methodology

Preprocessing the data & Exploratory Data Analysis
Training with 5 models

Evaluation
Comparison

e\
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Methodology: Preprocessing and EDA

1. Total 9 Train files: 3 for 3 subjects.
2. Total 3 Test files
3. Used:

a. 7 as Train out of 9

b. 2 as Val out of 9

c. 3 as Test
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Dataset: EDA:Training data distribution

Class Distribution
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Raw Signal - C3
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Methodology: Modeling

SVM

KNN

Hidden Markov Model
LSTM

BILSTM

kWb =
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Methodology: Modeling: SVM

. . v GridSearchCv
1 . SuperV|Sed Learnlng GridSearchCV(estimator=svC(),
param grid={'c': [0.1, 1, 10, 100], 'gamma': [1, 0.1, 0.01, 0.001],
2. Implemented oy e D
GridSearchCV e 8¢
"""" svc|
SVC()'

Selected Parameters:)

'C" 100, JJ
'gamma’: 1, <

\_kernel": 'rbf )
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Methodology: Modeling: kNN

1.
2.

Supervised Learning
Implemented GridSearchCV

Selected parameters: A

GridSearchCv

GridSearchCV(estimator=KNeighborsClassifier(),
param_grid={'n_neighbors': [50, 108, 268],
'weights': ['uniform’, ‘'distance’]},
verbose=19)
~ estimator: KNeighborsClassifier

KNeighborsClassifier()

Ev KNeighborsClassifier%

EKNeighborsClassifier()é
!

n_neighbors = 100 <

)

weights = uniform

N /
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Methodology: Modeling: Hidden Markov
Model

1. Probabilistic approach o
States = Classes = 3
Transition from one

class to another.

4. Gaussian Mixture Model
(GMM) for each class

5. Train GMMHMM using the
GMMs for each class HMM flow with classes as States

w N

P11
P12

P21




Methodology: Modeling: Long-Short-Term

Memory
1. Type of Recurrent Neural Network (RNN)
2. Designed to handle sequential data such as Time
Series
3. Capable of learning long-term dependencies.
4. Contains

a. Input gates: Allow in optional information from current cell state
b. Forget gates: Control flow of information

c. Output gates: Update and finalize the next hidden state
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Methodology: Modeling: Long-Short-Term
Memory

Hyperparameters

Window size: 16

Input shape: 96 L
Optimizer: Adam Wi
Learning Rate: 0.01 S O
Activation: ReLU e i
Dropout: 0.7 ] '
Epochs: 20

Batch size: 32

o

Softmax
——> y_pred

oMo = m

NSO R®®N =
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Methodology: Modeling: BiDirectional
Long-Short-Term Memory

Advancement of LSTM.

Uses two LSTM layers.

One layer processes input in the forward direction.
Can learn bidirectional long-term dependencies
between time steps of time-series or sequence data
Backtracking easier

e\

o
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Methodology: Modeling: BiDirectional
Long-Short-Term Memory

1. Window size: 16 ()

2. Input shape: 96

3. Optimizer: Adam T T T C‘}) """ |
4. Learning Rate: 0.001 B B R i W B e
5. Activation: RelLU 2 N S I
6. Dropout: 0.5 - s *—-—w s | ‘“—'—7 st | e
7.

8.

Epochs: 20 i g _____ X G GS, _____ ] g
Batch Size: 32 )
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Methodology

Attempted LSTM with Attention Layer

- not much improvement in accuracy.
- more training time.

Attempted wavelet and feature selection
- Not a significant difference
Improvements:

- 1D CNN to capture temporal information, attention to
capture important temporal information, LSTM for
long-term dependencies
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Methodology: Evaluation

Metrics used for Evaluation:

a. Accuracy
b. F1 measure
c. Precision
d. Recall
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Training Validation

Models

Accuracy F1 Precision Recall Accuracy F1 Precision Recall
SVM 0.67 0.67 0.68 0.67 0.65 0.64 0.65 0.64
kNN 0.75 0.75 0.75 0.76 0.69 0.68 0.68 0.68
HMM 0.38 0.36 0.40 0.44 0.46 0.46 0.48 0.47
LSTM 0.92 0.92 0.92 0.91 0.62 0.62 0.62 0.62
BiLSTM 0.96 0.96 0.96 0.96 0.66 0.66 0.66 0.65

@ Predictions on Test dataset (unknown labels).
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kKNN Accuracy

Variation of Training and Validation Accuracy with number of Neighbors
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Results: Accuracy & F1 - LSTM
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Results: Accuracy & F1 - BiLSTM
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Challenges

1. Raw data format as collected from EEG signals

2. Time-series classification require more deep
analysis and structured models.

3. Validation loss was increasing due to overfitting
and dataset complexity (sudden changes).
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Conclusion

- Simple Machine Learning Algorithms such as kNN
outperformed Deep Learning models (RNNs)
- LSTMs were not able to model the temporal
dependence of the data.

- Data did not have a significant temporal dependence.
- HMM did not perform as well as expected.

- Markovian Assumption is not valid.
- Subject 3 predictions difficult.
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